Title : Spatiotemporal Saliency Detection and Its Applications in Static and Dynamic Scenes ( Paper ID : 4367 )
نویسندگان
چکیده
This paper presents a novel method for detecting salient regions in both images and videos based on a discriminant center-surround hypothesis that the salient region stands out from its surroundings. To this end, our spatiotemporal approach combines the spatial saliency by computing distances between ordinal signatures of edge and color orientations obtained from the center and the surrounding regions and the temporal saliency by simply computing the sum of absolute difference (SAD) between temporal gradients of the center and the surrounding regions. Our proposed method is computationally efficient, reliable, and simple to implement and thus it can be easily extended to various applications such as image retargeting and moving object extraction. The proposed method has been extensively tested and the results show that the proposed scheme is effective in detecting saliency compared to various state-of-the-art methods.
منابع مشابه
Spatiotemporal Saliency and Background Subtraction in Dynamic Scenes
A background subtraction algorithm, based on center-surround saliency, is proposed. Background subtraction is formulated as the complement of saliency detection, by classifying non-salient (with respect to appearance and motion dynamics) points in the visual field as background. The algorithm is inspired by biological mechanisms of motion-based perceptual grouping, and extends a discriminant fo...
متن کاملCompressed-Sampling-Based Image Saliency Detection in the Wavelet Domain
When watching natural scenes, an overwhelming amount of information is delivered to the Human Visual System (HVS). The optic nerve is estimated to receive around 108 bits of information a second. This large amount of information can’t be processed right away through our neural system. Visual attention mechanism enables HVS to spend neural resources efficiently, only on the selected parts of the...
متن کاملStatic and space-time visual saliency detection by self-resemblance.
We present a novel unified framework for both static and space-time saliency detection. Our method is a bottom-up approach and computes so-called local regression kernels (i.e., local descriptors) from the given image (or a video), which measure the likeness of a pixel (or voxel) to its surroundings. Visual saliency is then computed using the said "self-resemblance" measure. The framework resul...
متن کاملA Spatiotemporal Saliency Model of Visual Attention Based on Maximum Entropy
This paper presents a spatiotemporal saliency visual attention model based on maximum entropy. A dynamic saliency map is created by calculating entropies in every corresponding local region between the current and some previous frames in a short video. In the same time, four low-level visual features including color contrast, intensity contrast, orientation and texture, are extracted and are co...
متن کاملA Novel Approach to Background Subtraction Using Visual Saliency Map
Generally human vision system searches for salient regions and movements in video scenes to lessen the search space and effort. Using visual saliency map for modelling gives important information for understanding in many applications. In this paper we present a simple method with low computation load using visual saliency map for background subtraction in video stream. The proposed technique i...
متن کامل